181 research outputs found

    Quantum-limited optical time transfer for future geosynchronous links

    Full text link
    The combination of optical time transfer and optical clocks opens up the possibility of large-scale free-space networks that connect both ground-based optical clocks and future space-based optical clocks. Such networks promise better tests of general relativity, dark matter searches, and gravitational wave detection. The ability to connect optical clocks to a distant satellite could enable space-based very long baseline interferometry (VLBI), advanced satellite navigation, clock-based geodesy, and thousand-fold improvements in intercontinental time dissemination. Thus far, only optical clocks have pushed towards quantum-limited performance. In contrast, optical time transfer has not operated at the analogous quantum limit set by the number of received photons. Here, we demonstrate time transfer with near quantum-limited acquisition and timing at 10,000 times lower received power than previous approaches. Over 300 km between mountaintops in Hawaii with launched powers as low as 40 μ\muW, distant timescales are synchronized to 320 attoseconds. This nearly quantum-limited operation is critical for long-distance free-space links where photons are few and amplification costly -- at 4.0 mW transmit power, this approach can support 102 dB link loss, more than sufficient for future time transfer to geosynchronous orbits

    Synchronization of Distant Optical Clocks at the Femtosecond Level

    Full text link
    The use of optical clocks/oscillators in future ultra-precise navigation, gravitational sensing, coherent arrays, and relativity experiments will require time comparison and synchronization over terrestrial or satellite free-space links. Here we demonstrate full unambiguous synchronization of two optical timescales across a free-space link. The time deviation between synchronized timescales is below 1 fs over durations from 0.1 s to 6500 s, despite atmospheric turbulence and kilometer-scale path length variations. Over several days, the time wander is 40 fs peak-to-peak. Our approach relies on the two-way reciprocity of a single-spatial-mode optical link, valid to below 225 attoseconds across a turbulent 4-km path. This femtosecond level of time-frequency transfer should enable optical networks using state-of-the-art optical clocks/oscillators.Comment: 19 pages, 9 figure
    • …
    corecore